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ABSTRACT

Convection is one of the most important mixing processes in stellar interiors. Hydrodynamic mass entrainment can bring fresh fuel
from neighboring stable layers into a convection zone, modifying the structure and evolution of the star. Because flows in stellar
convection zones are highly turbulent, multidimensional hydrodynamic simulations are fundamental to accurately capture the physics
of mixing processes. Under some conditions, strong magnetic fields can be sustained by the action of a turbulent dynamo, adding
another layer of complexity and possibly altering the dynamics in the convection zone and at its boundaries. In this study, we used
our fully compressible Seven-League Hydro code to run detailed and highly resolved three-dimensional magnetohydrodynamic sim-
ulations of turbulent convection, dynamo amplification, and convective boundary mixing in a simplified setup whose stratification is
similar to that of an oxygen-burning shell in a star with an initial mass of 25 M⊙. We find that the random stretching of magnetic field
lines by fluid motions in the inertial range of the turbulent spectrum (i.e., a small-scale dynamo) naturally amplifies the seed field by
several orders of magnitude in a few convective turnover timescales. During the subsequent saturated regime, the magnetic-to-kinetic
energy ratio inside the convective shell reaches values as high as 0.33, and the average magnetic field strength is ∼1010 G. Such strong
fields efficiently suppress shear instabilities, which feed the turbulent cascade of kinetic energy, on a wide range of spatial scales.
The resulting convective flows are characterized by thread-like structures that extend over a large fraction of the convective shell. The
reduced flow speeds and the presence of magnetic fields with strengths up to 60% of the equipartition value at the upper convective
boundary diminish the rate of mass entrainment from the stable layer by ≈ 20% as compared to the purely hydrodynamic case.
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1. Introduction

Convection plays a key role in the evolution of stars. In the deep,
optically thick layers, convective flows can efficiently transport
energy and angular momentum outward, so they determine both
the thermal structure and the rotational profile of stars (see, e.g.,
Maeder 2009; Kippenhahn et al. 2013). Furthermore, because
the characteristic spatial scales of convection are much larger
than the mean free path in the stellar plasma, stellar convection
zones are highly turbulent environments, with Reynolds num-
bers that can be as high as 1014 (Jermyn et al. 2022). Turbulent
flows quickly mix chemical elements over the relatively short
convective turnover timescale, thus profoundly affecting the nu-
clear energy generation in burning layers of stars and their evo-
lution.

Despite the huge imprint of convection on stars, most one-
dimensional (1D) stellar evolution codes still rely on simpli-
fied parametrizations of the convective energy transport, such as
the popular mixing-length theory (MLT; Prandtl 1925; Böhm-
Vitense 1958). On the one hand, these parameterized theories
allow 1D models to simulate the evolution of stars over ther-
mal and nuclear timescales, which is still unfeasible in multi-D.
On the other hand, the parameters that enter these prescriptions
cannot be derived from first principles and need to be calibrated.

Usually, their value is tuned so that 1D models can reproduce the
global properties of our Sun (see, e.g., Richard et al. 1996), but
the universality of this approach has been heavily questioned in
the literature (Trampedach et al. 2014; Magic et al. 2015; Joyce
& Chaboyer 2018; Sonoi et al. 2019). Moreover, local theories of
convection such as the MLT assume that convective mixing stops
at the position of the formal convective boundary. More realisti-
cally, convective plumes approach the convective boundary with
nonzero velocities and give rise to hydrodynamic processes that
can entrain some excess mass and entropy from the neighboring
stable layer into the convection zone. Evidence of extra mixing
occurring at stellar convective boundaries has been provided by a
number of observations, including eclipsing binaries (Valle et al.
2016; Claret & Torres 2016), old open clusters (Aparicio et al.
1990), or asteroseismology (Bossini et al. 2015; Aerts 2021).
The entrainment of fresh fuel into a burning layer can prolong
its lifetime, enlarge convective cores in upper main sequence
stars, and determine the structure of supernova progenitors in
more massive stars (Müller 2020, and references therein). In stel-
lar evolution codes, mixing at convective boundaries is crudely
modeled by means of additional parametrizations, usually in the
form of diffusive over-mixing or convective penetration (Anders
& Pedersen 2023, and references therein). The uncertainties aris-
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ing from the usage of such simplistic models limit the predic-
tive power of stellar evolution calculations and have far-reaching
consequences for supernova explosions, the formation of stellar
populations, and galactic chemical evolution. Although several
nonlocal theories of convection have been presented in the lit-
erature (see, e.g., Xiong 1978; Kuhfuss 1986; Canuto 1997; Li
& Yang 2007; Garaud et al. 2010; Canuto 2011), they have not
been extensively used in 1D stellar calculations so far.

To overcome the limitations of stellar-evolution models, sev-
eral research groups have started focusing their efforts in the
past two decades on multi-D hydrodynamic modeling of tur-
bulent convection and mixing at convective boundaries in dif-
ferent classes of stellar objects, including core-convective main
sequence stars (Gilet et al. 2013; Horst et al. 2020; Higl et al.
2021; Baraffe et al. 2023; Herwig et al. 2023; Andrassy et al.
2023), envelope-convective stars (Pratt et al. 2016; Hotta 2017;
Käpylä 2019; Blouin et al. 2023), and more massive stars during
late burning stages (Meakin & Arnett 2007; Jones et al. 2017;
Cristini et al. 2017; Andrassy et al. 2020; Rizzuti et al. 2023). In
this approach, nonlinear hydrodynamic processes are captured
self-consistently, which allows parameterized theories of con-
vection and convective boundary mixing to be tested and cali-
brated for different stellar masses and evolutionary stages.

One more layer of complexity to the problem of stellar con-
vection is, however, represented by the possible presence of
magnetic fields, which have been observed both in low- and
high-mass stars (Brun & Browning 2017; Keszthelyi 2023, and
references therein). The coupling between turbulent fluid mo-
tions and magnetic fields can give rise to small-scale dynamos
(SSDs, Meneguzzi et al. 1981; Brandenburg & Subramanian
2005; Schekochihin et al. 2007), which amplify magnetic fields
on scales smaller than the forcing scale of turbulence. As ob-
served in numerous simulations of solar convection (Vögler &
Schüssler 2007; Pietarila Graham et al. 2010; Rempel 2014;
Thaler & Spruit 2015; Hotta et al. 2016; Hotta 2017), SSDs can
drastically change the morphology of the convective flows, re-
duce their speed, and alter the dynamics of the overshoot region
at the bottom of the solar convection zone as compared to the
purely hydrodynamic case.

Other than the Sun, effects of magnetohydrodynamic (MHD)
processes on the properties of convective flows have also been
investigated in cool (Browning 2008; Käpylä 2021; Bhatia et al.
2022) and upper-main-sequence stars (Brun et al. 2005; Feath-
erstone et al. 2009; Augustson et al. 2016), but very few MHD
simulations of late burning stages of massive stars have been
run to date (Varma & Müller 2021; Canivete Cuissa & Teyssier
2022; Varma & Müller 2023). In contrast to the main sequence
phase, these late evolutionary stages are characterized by vig-
orous convective shells that can entrain a substantial amount of
mass on relatively short timescales, possibly giving rise to shell
mergers (Ritter et al. 2018; Mocák et al. 2018; Yadav et al. 2020;
Andrassy et al. 2020). If an efficient SSD action takes place in-
side these shells, it could reduce the mass entrainment rate at
the convective boundaries and possibly delay or even inhibit the
occurrence of the merger events. Numerical simulations of the
dynamical amplification of magnetic fields in these layers then
become essential for determining the stratification of the super-
nova progenitor and the fate of the star. Acquiring more insight
into dynamo mechanisms in late burning shells of massive stars
is also particularly important because magnetic fields can act
as seeds to magneto-rotationally powered supernovae (Müller &
Varma 2020).

In this paper, we investigated the effects of a small-scale tur-
bulent dynamo acting in a late stellar convective shell using our

fully compressible, MHD, Seven-League Hydro (SLH) code.
In particular, we used an idealized setup whose stratification is
close to that of an oxygen-burning shell in a massive star (An-
drassy et al. 2022). In this study, we did not intend to perform
realistic simulations of such an evolutionary stage, but rather ad-
dress the following questions: Can an SSD generate dynamically
relevant magnetic fields on the typical timescales set by convec-
tive motions in the oxygen shell? What is the topology of such
fields? What is the feedback of MHD processes on the convec-
tive flows and on the mixing at the convective boundary?

The paper is structured as follows: in Sect. 2, we give a brief
description of the numerical methods used to run the simulations
needed for this study. The details of the initial stratification are
provided in Sect. 3. In Sect. 4, we present the numerical results,
including the evolution of the small-scale turbulent dynamo and
its effects on the boundary mixing. Finally, in Sect. 5, we draw
conclusions and summarize the main results.

2. Methods

2.1. Equations solved

We described the physical problem by means of the fully com-
pressible equations of ideal MHD with time-independent gravity,

∂ρ

∂t
+ ∇ · (ρV) = 0, (1)

∂(ρV)
∂t
+ ∇ · [ρV ⊗ V + (p + pB)I − B ⊗ B] = ρg, (2)

∂(ρetot)
∂t

+ ∇ · [(ρetot + p + pB)V − B(B · V)] = 0, (3)

∂B
∂t
+ ∇ · (V ⊗ B − B ⊗ V) = 0, (4)

∂(ρψ)
∂t
+ ∇ · (ρψV) = 0, (5)

where ρ denotes the density, V = (Vx,Vy,Vz) the velocity vec-
tor, B= (Bx, By, Bz) the magnetic field1, pB = |B|2/2 the magnetic
pressure, g= (gx, gy, gz) the gravitational acceleration, etot = eint+

|V|2/2 + |B|2/(2ρ) + ϕ the total energy per unit mass, eint the in-
ternal energy per unit mass, ϕ the gravitational potential, ψ the
mass fraction of a passive tracer, and I the unit tensor. The sys-
tem in Eqs. (1)–(5) is closed by an Equation of State (EoS) for
the gas pressure p,

p = p(ρ, eint). (6)

In our simulations, we assumed an ideal gas law,

p(ρ, eint) = (γ − 1)ρeint, (7)

where γ = 5/3 is the adiabatic index.
We stress that the absence of the viscous and resistive dis-

sipation terms in Eqs. (2)–(4) does not mean that the simulated
flows are inviscid and nonresistive. In fact, the numerical meth-
ods that we used to solve the equations of ideal MHD (see
Sect. 2.2) must add a certain amount of numerical dissipation
into the system in order to achieve numerical stability.

1 We use the Lorentz-Heaviside units throughout the paper
(B= b/

√
4π).
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2.2. Numerical methods

We solved Eqs. (1)–(5) with the SLH code, which is suited
for simulating low-Mach-number (magneto-)convection and ex-
citation of internal gravity waves (IGWs) in the deep interi-
ors of stars (Miczek et al. 2015; Edelmann et al. 2017; Horst
et al. 2020, 2021; Edelmann et al. 2021; Andrassy et al. 2022;
Leidi et al. 2022; Andrassy et al. 2023). SLH makes use of a
second-order finite-volume discretization and upwinding tech-
niques that require an approximate solution to the Riemann prob-
lem at each cell interface. Here, the pair of Riemann states was
reconstructed using the Piecewise-Parabolic-Method (PPM) of
Colella & Woodward (1984). Upwind, hyperbolic fluxes were
computed at cell interfaces with the low-dissipation version of
the HLLD solver (LHLLD) of Minoshima & Miyoshi (2021).
LHLLD modifies the stabilizing pressure-diffusion term in the
original HLLD solver of Miyoshi & Kusano (2005) to ensure
that the magnitude of numerical dissipation (relative to the phys-
ical central flux) is independent of the Mach number of the flow,
M = |V|/c, where c= (γp/ρ)1/2 is the sound speed. This cor-
rection dramatically reduces the excessive amount of numerical
diffusion introduced by shock-capturing methods in simulations
of subsonic flows (Miczek et al. 2015; Leidi et al. 2022).

To suppress the development of spurious flows due to grid
discretization errors in strongly stratified setups, we used a well-
balancing technique (the Deviation method, Berberich et al.
2021; Edelmann et al. 2021). In this method, the vector of con-
served quantities, U= (ρ, ρV, ρetot, B, ρψ), is split into a
time-independent hydrostatic component, Ũ, and a fully non-
linear perturbation, δU. Eqs. (1)–(5) are then solved by enforc-
ing ∂Ũ/∂t= 0, which is achieved in practice by subtracting the
hydrostatic fluxes and source terms from the spatial residuals.
Such a measure is necessary because conventional finite volume
methods discretize hyperbolic fluxes and gravitational source
terms at different locations on the computational grid, so hydro-
static solutions cannot be maintained for long times. If ignored,
these discretization errors can dramatically affect the evolution
of buoyancy-driven flows and produce grossly inaccurate numer-
ical solutions (Edelmann et al. 2021).

To keep the strength of magnetic monopoles under control,
we used a staggered constrained transport (CT) method (Evans
& Hawley 1988). Different from the finite volume discretiza-
tion, here the surface-averaged magnetic field components are
evolved at cell interfaces by performing the line integral of the
electromotive force along the cell edges. Thanks to this opera-
tion, the update on the cell-volume average of ∇ · B vanishes to
machine precision. In SLH, the upwind electromotive force at the
cell edges is computed according to the CT-Contact scheme of
Gardiner & Stone (2005).

Finally, both cell-centered and staggered quantities were
evolved in time with a semi-discrete scheme based on the
method of lines. The resulting system of ordinary differential
equations was solved using the explicit strong stability preserv-
ing (SSP) RK2 method of Shu & Osher (1988). Further details
regarding the implementation of the fully unsplit MHD solver in
SLH can be found in Leidi et al. (2022).

3. Setup

We used the setup first described in Andrassy et al. (2022), who
performed a comparison of five different hydrodynamic codes
(SLH, PPMSTAR, MUSIC, FLASH, and PROMPI) on a problem in-
volving turbulent convection, convective boundary mixing, and
the excitation of IGWs in an overlying stable layer. The thermo-

dynamic conditions of this test setup resemble those found dur-
ing oxygen shell burning in a star with an initial mass of 25 M⊙
(Jones et al. 2017). However, Andrassy et al. (2022) adopted
a few simplifications to make the study easily reproducible by
other research groups. In particular, the geometry of the shell
was plane-parallel, the EoS was that of an ideal gas, neutrino
cooling was not included, and detailed nuclear burning was re-
placed by a time-independent heat source term, whose ampli-
tude was set such that convective motions were driven with root-
mean-square velocities characteristic of late evolutionary stages
in massive stars (Mrms ≈ 0.04).

We mapped the initial hydrostatic stratification (see Fig. 1)
on a 3D Cartesian grid with spatial domain (x, y, z) ∈
[−Lref , Lref] × [Lref , 3Lref] × [−Lref , Lref], where Lref = 4 ×
108cm. We used periodic boundaries in the horizontal x− and
z−direction. At the top and bottom boundaries of the domain, in-
stead, we adopted impermeable, stress-free boundary conditions
for the velocity field,

∂Vx

∂y
=
∂Vz

∂y
= Vy = 0, (8)

we forced the magnetic field to be purely horizontal,

∂Bx

∂y
=
∂Bz

∂y
= By = 0, (9)

and for the scalar quantities we assumed

∂ρ

∂y
=
∂p
∂y
=
∂ψ

∂y
= 0. (10)

The gravitational acceleration, assumed to be time-
independent, points downward in the y-direction and goes to zero
at the vertical boundaries according to Eq. (1) of Andrassy et al.
(2022). In that work, such a choice for the gravitational accelera-
tion was made to allow the hydrostatic density and pressure pro-
files to become constant at the domain boundaries, making the
problem consistent with the conditions in Eq. (10). Although un-
realistic, turning off the gravity at the boundaries does not appre-
ciably alter the stratification of the oxygen shell, which is mostly
affected by the aforementioned simplifications, as can be seen
in Fig. 1 of Andrassy et al. (2022). For consistency with their
model, we decided not to modify the profile of the gravitational
acceleration here.

The stratification is isentropic up to approximately y= 2Lref ,
and it smoothly turns subadiabatic in the upper half of the do-
main. Overall, the grid covers 4.35 pressure scale heights in the
vertical direction. To be able to track the time evolution of the
mass entrained into the convection zone, we filled the convec-
tively stable layer with a passive tracer at t= 0 s, whose abun-
dance progressively drops to zero across the convective bound-
ary. Further details regarding the initial stratification and the heat
source can be found in Andrassy et al. (2022).

To start the dynamo action, we planted an initially horizontal
magnetic field into the grid, Bx = 105 G. The strength of the seed
field was chosen such that the Lorentz force exerted on the fluid
at early times was weak enough to not affect the development of
convection.

We judged the numerical convergence of the results obtained
in this work by running simulations on grids with 1283, 2563,
and 5123 cells. To compute meaningful time-averaged quanti-
ties and avoid introducing temporal correlations caused by the
turbulent nature of the convective flows, all test cases were run
until tmax = 25τconv, where τconv = 63.36 s is the mean convective
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Fig. 1. Profiles of density, pressure, pseudo-entropy (p/ργ), gravity,
mass fraction of a passive tracer (ψ), and heat source term (q̇) as a func-
tion of the vertical coordinate y at t = 0 s. Here, ρref = 1.82×106 g cm−3,
pref = 4.64 × 1023 dyne cm−2, gref = 6.37 × 108 cm s−2, q̇ref = 1.76 ×
1020 erg cm−3 s−1, and Lref = 4 × 108 cm.

turnover timescale in the purely hydrodynamic case, defined ac-
cording to Eq. (16) of Andrassy et al. (2022). By t= tmax, the
growing convective layer is still sufficiently far away from the
upper boundary of the spatial domain that the imposed boundary
conditions do not appreciably alter the dynamics of the mixing
region. Thus, we decided not to extend the simulations beyond
tmax. Finally, in order to capture possible differences between the
MHD and the purely hydrodynamic case, we ran an additional
set of simulations without magnetic fields.

4. Results

4.1. Onset of convection and kinematic stage of the dynamo

To break the initial symmetry, we added a small-amplitude per-
turbation to the hydrostatic density stratification according to
Eq. (6) of Andrassy et al. (2022). The energy injected by the
heat source at the base of the box leads to the development of
buoyant parcels of hot fluid that rise in the adiabatic layer (see
Fig. 2). As soon as these flows cross the boundary of the subadi-
abatic layer, the buoyant acceleration changes sign (so it points
downward in the y-direction) and forces the rising plumes to turn
around. The large-scale buoyant fluid elements that are driven by
the energy source quickly develop shear instabilities that cascade
down to smaller scales, and turbulent convection fully develops
by t ≈ τconv.

As shown in Fig. 3, the mean magnetic energy density inside
the convective shell2,

ẼB =
1
2
⟨|B|2⟩conv, (11)

increases exponentially in time. The growth rate of the instabil-
ity is higher on finer grids, which indicates that the amplification
2 ⟨·⟩ is the volume-weighted spatial average operator.

process mostly occurs on intermediate or small spatial scales. It
could be an SSD, where the magnetic field is randomly stretched
at scales smaller than the forcing scale of turbulence. How-
ever, two other processes could contribute to the amplification
of small-scale magnetic fields in this setup: turbulent induction,
which is the stretching of large-scale magnetic fields by a turbu-
lent, small-scale velocity component (Schekochihin et al. 2007),
and turbulent cascade of magnetic energy toward smaller scales
(Pietarila Graham et al. 2010). In fact, the large-scale fields that
are needed to excite the latter two processes, not only are char-
acteristic of large-scale dynamos (Brandenburg 2009; Charbon-
neau 2013), but they can also be supported by the large-scale
velocity structures typical of turbulent convection (Käpylä et al.
2018). Moreover, the imposed boundary conditions (see Sect. 3)
allow the integrated horizontal magnetic flux, and consequently
the mean horizontal magnetic field, to be preserved in time inside
the spatial domain. Therefore, the mean horizontal field takes
the value of the chosen seed field, Bx = 105 G, and represents
a persistent large scale magnetic field component that could, in
principle, contribute to the amplification of magnetic energy via
turbulent induction.

To get a better understanding of the underlying mechanisms
that amplify the magnetic energy in these simulations, we com-
puted transfer functions TXYZ(k) in the Fourier space between
the kinetic (K) and magnetic (B) energy reservoirs inside the
convective layer, following the approach of Pietarila Graham
et al. (2010). In particular, TXYZ(k) represents the energy re-
ceived (or lost in case of TXYZ(k)< 0) per unit time and per unit
wavenumber at scale k of energy type Y from all scales of en-
ergy type X via process Z. The transfer of magnetic energy to the
k-th component of kinetic energy is determined by the net work
done on the fluid by the magnetic tension force,

TBKT(k) =
1
2

V̂(k) · [÷B · ∇B]∗(k)

+
1
2

(”ρV)(k) ·
ïÿ�1
ρ

B · ∇B
ò∗

(k) + c.c., (12)

and the magnetic pressure force,

TBKP(k) = − 1
4

V̂(k) · [’∇|B|2]∗(k)

− 1
4

(”ρV)(k) ·
ï÷1
ρ
∇|B|2

ò∗
(k) + c.c., (13)

where ∗ is the complex conjugate, c.c. is the complex conjugate
of the whole expression on the right-hand side, and ˆ represents
the Fourier projection3. Magnetic energy on scale k is produced
or removed via stretching of the magnetic field lines,

TKBS(k) = B̂(k) · [÷B · ∇V]∗(k) + c.c., (14)

and through compression and advection of the magnetic field,

TKBCA(k) = − B̂(k) · [÷B∇ · V]∗(k)

− B̂(k) · [÷V · ∇B]∗(k) + c.c. (15)

Because here we solved the fully compressible MHD equations,
TKBCA(k) includes both the transport of energy within the mag-
netic energy reservoir and the generation of magnetic energy

3 A thorough derivation of the transfer functions computed here can be
found in Appendix A.1. of Pietarila Graham et al. (2010).
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Fig. 2. Development of convection in the MHD simulation of the idealized oxygen shell run on a 5123 grid. The panels show fluctuations in
pseudo-entropy (A = p/ργ) in the z= 0 plane at different times, as indicated by the insets. The entropy generated by the heat source at the base
of the box (see Fig. 1) is mixed throughout the initially adiabatic layer by turbulent convection. This process slowly increases the entropy content
of the convection zone in time. The broad stripe of negative entropy fluctuation visible in the upper half of the domain at early times is due the
thermal expansion of the convective layer. The turbulent flows also excite IGWs at the upper convective boundary (lower center panel) which then
propagate in the subadiabatic layer.

through fluid compression. These two processes, however, can-
not be decoupled (Rempel 2014), which can be seen by expand-
ing the advective flux of magnetic energy as

−∇·
Å

V
|B|2

2

ã
(k) = −B̂(k) ·

¤�ï
(V · ∇)B +

B
2
∇ · V

ò∗
(k)+c.c. (16)

To simplify the calculations, instead of computing 3D Fourier
projections in Eqs. (12)-(15), we averaged transfer functions
TXYZ(kh, y j) obtained at each horizontal plane y j inside the con-
vection zone,

TXYZ(kh) = ⟨TXYZ(kh, y j)⟩y j∈(Lref ,2Lref ). (17)

Here, kh is the horizontal wavenumber kh =
»

k2
x + k2

z , where

kx =

{
m, 0 ≤ m ≤

ö
Nx−1

2

ù
,

−Nx + m,
ö

Nx−1
2

ù
< m < Nx,

(18)

kz =

{
n, 0 ≤ n ≤

ö
Nz−1

2

ù
,

−Nz + n,
ö

Nz−1
2

ù
< n < Nz,

(19)

⌊.⌋ is the floor function, and Nx and Nz are the number of cells in
the x− and z−direction, respectively.

Figure 4 shows results from the transfer analysis performed
on the grid with 5123 cells. Stretching of the magnetic field

lines contributes most of the magnetic energy generation at
spatial wavenumbers close to kh = 50. In these simulations, the
typical velocities in the convection zone are considerably sub-
sonic (Mrms ≈ 0.04), so fluid compression due to the ram pres-
sure of the convective flows (pram ∼M2) has a negligible con-
tribution to the generation of magnetic energy (see TKBC(kh) =
−B̂(kh) · [÷B∇ · V]∗(kh) + c.c. in Fig. 4). Therefore, TKBCA(kh)
measures mostly the advective transport of magnetic energy to
scale kh from all scales of the magnetic field, similar to the case
of incompressible MHD,

TKBCA(kh) ≈ −B̂(kh) · [÷V · ∇B]∗(kh) + c.c. (20)

We observe that the magnetic cascade mainly removes magnetic
energy from large scales, where TKBCA < 0, and redistributes
it at scales with kh > 75, where TKBCA > 0. This process domi-
nates the generation of magnetic energy over stretching only at
kh > 130, which corresponds to a spatial scale of 3.9 times the
width of the grid cells, ∆x. Work done by fluid motions against
the magnetic tension force (−TBKT) most efficiently transforms
kinetic energy at kh ≈ 30 into magnetic energy. Work done by
the magnetic pressure force on the fluid is negligible everywhere
except on very large scales. These results allow us to find the
range of wavenumbers where the magnetic field is most effi-
ciently stretched by fluid motions. As pointed out by Pietarila
Graham et al. (2010), the spatial wavenumber at which magnetic
field is generated (q), the one at which it is stretched (k), and the
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Fig. 3. Time evolution of the mean magnetic energy density inside the
convection zone for the indicated grid resolutions.

one at which the flow works against magnetic tension (p) form a
triadic relation,

k = q − p. (21)

By considering the most extreme cases in which q and p have the
same or the opposite orientation, we estimate that the magnetic
field lines are most efficiently stretched at 20≲ kh ≲ 80. As we
show in Sect. 4.2, this interval lies at the bottom of the inertial
range of the turbulent kinetic energy spectrum. Thus, the am-
plification of magnetic energy is mostly caused by the action of
a small-scale turbulent dynamo, with a minor contribution from
the turbulent cascade close to the grid scale.

Further evidence of small-scale turbulent dynamo action can
be provided by checking the scaling of the growth rate of the
magnetic energy, γ= ∂lnẼB/∂t, with the grid resolution. Because
in this work we used the Implicit Large Eddy Simulation (ILES)
method, the magnetic Prandtl number (Prm = ν/η) is likely to be
close to or larger than unity (Vögler & Schüssler 2007; Rempel
2014). In this regime of Prandtl numbers, an SSD can only be
started if the fluid Reynolds number, Re=VrmsLref/ν, is larger
than a critical threshold. The growth rate of the magnetic energy
in an unstable SSD should then scale as Re1/2 (Kazantsev 1968;
Schekochihin et al. 2004). Although the effective value of the
kinematic viscosity (ν) and resistivity (η) coefficients are deter-
mined by the underlying numerical methods used to solve the
MHD equations, in the ILES approach the fluid Reynolds num-
ber should depend on the spatial resolution as ∆x−4/3 (Cristini
et al. 2017), which leads to γ ∝ Re1/2 ∝ ∆x−2/3. Our study in-
dicates that the growth rate γ follows the predicted theoretical
scaling (see Fig. 5). These results can only be confirmed by us-
ing an explicit kinematic viscosity coefficient so that Re can be
measured directly, which, however, is beyond the scope of this
work.

At early times, the magnetic energy is still subdominant with
respect to the kinetic energy content of the flow. Therefore, the
Lorentz force does not affect the evolution of the convection, and
we do not observe any systematic difference in the velocity field

between the MHD and the hydrodynamic simulations. This is
the kinematic stage of the dynamo, which lasts for several con-
vective turnover timescales, depending on the resolution of the
grid.

4.2. Nonlinear phase of the dynamo

The amplification of the magnetic field due to the action of the
small-scale turbulent dynamo proceeds until the Lorentz force
becomes strong enough to start having a feedback effect on
the flow. Such a change in the evolution of the dynamo hap-
pens when the magnetic energy approaches equipartition with
the kinetic energy content of the eddies on the small scales of
turbulence. Strong, small-scale magnetic fields inhibit the de-
velopment of shear instabilities that feed the turbulent cascade
and drive the dynamo amplification. The stretching of the mag-
netic field lines happens now on larger scales, where turbulence
has not been quenched. Work done against the magnetic tension
force by the turbulent convective flows sustains the magnetic
field against numerical (resistive) dissipation, and the dynamo
reaches saturation. By t/τconv ≈ 15, all of the MHD simulations
presented here have entered this phase. This stage of the dynamo,
however, does not represent a statistical steady state solution of
the simulated setup. In fact, the continuous injection of entropy
into the system by the heat source and the mixing processes that
take place at the convective boundary (see Sect. 4.3) both con-
tribute to the entrainment of material from the overlying stable
layer. Therefore, the size, mass, and entropy content of the con-
vective layer keep increasing over time.

The magnetic-to-kinetic energy ratio, shown in Fig. 6,
reaches saturation with a mean value of ≈ 0.22 on the finest grid,
with sporadic, intermittent episodes in which it reaches values
as high as 0.33. During the nonlinear phase of the dynamo, the
mean kinetic energy density inside the convective shell in the
MHD simulations,

ẼK =
1
2
⟨ρ|V|2⟩conv, (22)

is on average 25% lower than that in the hydrodynamic case on
the 5123 grid (see Fig. 7). We obtained this result by first com-
puting the time average {·} of ẼK over t ∈ (15τconv, 25τconv), and
then by calculating

ϵ = {ẼK,MHD}/{ẼK,HYDRO} − 1. (23)

However, the large temporal fluctuations that characterize ẼK
made it necessary to provide an error estimate on ϵ in order to
prove the statistical significance of this result. The error on ϵ
is a combination of the statistical uncertainties on {ẼK,HYDRO}
and {ẼK,MHD}, which we computed as follows. First we obtained
the standard deviation σK of ẼK over the selected time series
for both the hydrodynamic and MHD setups. Second, we esti-
mated the statistical uncertainty on the mean quantity {ẼK} by
taking into account possible temporal correlations introduced by
the turbulent nature of the convective flows. According to Fig.
4 of Andrassy et al. (2022), the autocorrelation function of the
convective velocity drops to zero after a time shift ∆t≈ τconv,
which suggests that there is approximately one independent re-
alization of the convective flows per convective turnover. Thus,
the uncertainty associated to {ẼK}, σ̃K, was approximated as

σ̃K =
σK√
Nto

, (24)
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where Nto = 10 is the number of convective turnovers (see also
Table 1). Finally, we computed the variance of ϵ,

σ2
ϵ =

Å
∂ϵ

∂{ẼK,HYDRO}
ã2

σ̃2
K,HYDRO+

Å
∂ϵ

∂{ẼK,MHD}
ã2

σ̃2
K,MHD. (25)

We find σϵ ≈ 3%, making a mean relative deviation of 25% sta-
tistically significant (i.e., different from zero) by more than 8σϵ .

In the ILES approach, increasing the grid resolution reduces
the amount of numerical resistivity introduced into the system,
making the turbulent dynamo progressively more efficient. Con-
sequently, the mean magnetic energy density in our simulations
increases by a factor of two from the 1283 to the 5123 grid, where
the typical strength of the magnetic field is ≈ 5× 109 G (see Ta-
ble 2). On the other hand, ẼK does not seem to show a significant
resolution dependence when averaged over the saturated phase
of the dynamo, t ∈ (15τconv, 25τconv), as can be noted from the
values provided in Table 1. Averaging over a wider time win-
dow could potentially reveal a statistically significant trend in
{ẼK} with increasing spatial resolution. However, this is not pos-
sible with our current setup, in which the convective boundary
approaches the upper domain boundary at late times, potentially
altering the dynamics of the mixing region and producing unre-
liable results (see also Sect. 3). We also note that a fixed time-
averaging window, in principle, samples different evolutionary
times of the dynamo depending on grid resolution. In fact, the
oxygen shell does not have a statistical steady state solution, and
the time at which the dynamo enters its nonlinear regime is res-
olution dependent. However, as visible in Fig. 7, neither ẼK nor
ẼB show clear, long-term trends in the saturated phase of the dy-
namo. This result suggests that the secular evolution of the mean
stratification can be neglected for this analysis since it does not
seem to affect basic properties of the flows and of the dynamo.

Table 1. Mean kinetic energy density (in units of erg cm−3) inside the
convection zone, averaged over t ∈ (15τconv, 25τconv) for the indicated
grid resolutions in the hydrodynamic and MHD cases.

N ẼK/1020 (HYDRO) ẼK/1020 (MHD)

128 1.25 ± 0.03 0.97 ± 0.03
256 1.26 ± 0.02 1.00 ± 0.03
512 1.22 ± 0.03 0.91 ± 0.03

Notes. The errors represent one standard deviation over the time series
divided by

√
Nto, where Nto = 10 is the estimated number of independent

data points (one per convective turnover).

The suppression of small-scale shear instabilities in the con-
vective flows caused by the generated strong magnetic fields can
be noted in Fig. 8, where we compare snapshots of the Mach
number taken from an MHD and a purely hydrodynamic sim-
ulation in the nonlinear phase of the dynamo. In contrast to
the hydrodynamic case, where turbulence is essentially isotropic
on spatial scales smaller than Lref , the velocity field in the
MHD simulation is characterized by the presence of anisotropic,
thread-like structures that extend over a large part of the convec-
tive shell.

A comparison of horizontally averaged velocity profiles (see
Fig. 9) shows that horizontal velocities in the MHD case are re-
duced by as much as 30% in the convective layer, as compared
to the simulations without magnetic fields. Vertical velocities,
instead, are diminished on average only by 10%. As visible in
Fig. 10, the partial suppression of the horizontal mixing in the
MHD runs increases the magnitude of the root-mean-square en-
tropy fluctuation inside the convection zone with respect to the
hydrodynamic simulations. A larger contrast in the thermal con-
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Fig. 5. Growth rate of the mean magnetic energy inside the convec-
tion zone (averaged over the kinematic phase of the dynamo) as a
function of the grid spacing, ∆x. For this analysis, we also simulated
the kinematic phase of the dynamo on grids with 3843 and 6403 cells
(∆x/Lref = 5.2×10−3, and ∆x/Lref = 3.1×10−3, respectively). Error bars
represent three standard deviations, computed over the time series. The
expected theoretical scaling for SSD amplification (γ ∝ Re1/2 ∝ ∆x−2/3)
is represented by the black dashed line.

Table 2. Mean magnetic field strength inside the convection zone, aver-
aged over t ∈ (15τconv, 25τconv) for the indicated grid resolutions.

N ⟨|b|/√4π⟩conv [109G]

128 3.49 ± 0.06
256 4.24 ± 0.06
512 5.06 ± 0.08

Notes. The errors represent one standard deviation over the time series
divided by

√
Nto, where Nto = 10 is the estimated number of independent

data points (one per convective turnover).

tent between up- and downflows in turn increases the efficiency
of the convective energy transport. For this reason, despite the
mild suppression of vertical velocities in the convection zone
caused by the action of the dynamo, we do not observe any sig-
nificant difference in the vertical enthalpy fluxes,

FH = ⟨(eint + p)Vy⟩x,z, (26)

between the MHD and the hydrodynamic setups (see Fig. 11).
Only in the overshoot layer, where FH < 0, the MHD simulations
are characterized by a smaller unsigned enthalpy flux than their
hydrodynamic counterpart. This result may be due to the com-
bined effects of reduced flow speeds and entropy fluctuations at
the upper convective boundary in the MHD case, as visible in
Fig. 9 and Fig. 10, respectively.

In Fig. 12, we show the kinetic and magnetic energy spec-
tra computed in the y= 1.5Lref plane, averaged over the satu-
rated phase of the dynamo. The kinetic energy spectra result-
ing from the hydrodynamic simulations converge to the Kol-
mogorov scaling (k−5/3

h , Kolmogorov 1941) in the inertial range.
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Fig. 6. Time evolution of the mean magnetic-to-kinetic energy ratio in-
side the convective shell.
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Fig. 7. Time evolution of the mean kinetic energy density inside the con-
vection zone, ẼK, for the purely hydrodynamic (vermilion) and MHD
(light blue) simulations. The time evolution of the mean magnetic en-
ergy density in the MHD simulations, ẼB, is also shown.

The scale at which the power spectrum deviates from the Kol-
mogorov law due to the action of numerical dissipation becomes
smaller as the resolution is progressively increased, as expected
in the ILES approach. The kinetic energy spectra in the MHD
simulations, instead, deviate from the hydrodynamic curves al-
ready at wavenumbers of kh ≈ 10, where the dynamo is most ef-
ficient at converting kinetic energy into magnetic energy (i.e.,
it achieves maximum |TBKT|/ÊK). The observed drop of kinetic
energy in the MHD case corresponds to an increase of mag-
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netic power in the inertial range, and the sum of the two en-
ergy contributions approximately resembles the kinetic energy
spectrum in the hydrodynamic simulations. The wavenumber at
which the magnetic-to-kinetic energy ratio becomes greater than
unity decreases on finer grids4. On the grid with 5123 cells, the
break-even point is at kh = 10, which corresponds to approxi-
mately half of the pressure scale height at y= 1.5Lref . Unlike
the case of forced, isotropic MHD turbulence (Haugen et al.
2004; Schekochihin et al. 2004; Iskakov et al. 2007; Branden-
burg 2011), our simulations of stratified convection also show
a substantial amount (up to 30%) of magnetic power stored at
wavenumbers kh < 10. This field component is generated by co-
herent structures in the form of large-scale up- and downflows
that stretch the magnetic field lines over a large fraction of the

4 Energy spectra extracted from different planes in the convective shell
show qualitatively similar results.

size of the convection zone. The presence of a large-scale field
component can be observed in Fig. 13, where we show vertical
and horizontal cuts in By for all our three grids. A small-scale
component with mixed polarity also becomes more noticeable
on progressively finer grids with reduced numerical dissipation.

Both the horizontal and the vertical component of the mag-
netic field become stronger as the grid is refined (see Fig. 14).
The magnetic field smoothly turns horizontal across the upper
convective boundary, where the convective flows overturn due
to the negative buoyant acceleration. At the bottom of the shell,
the magnetic field is forced to be horizontal in order to retain its
solenoidal property given the imposed boundary conditions. We
note that the reflecting boundary forces the convective flows to
abruptly change direction over a few computational cells, which
artificially enhances the stretching and the compression of the
magnetic field lines. This process, however, only affects the gen-
eration of magnetic energy in a narrow region close to the bottom

Article number, page 9 of 15



A&A proofs: manuscript no. oxygen-shell-MHD

1.0 1.5 2.0 2.5 3.0
y [Lref]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

〈|V
y|〉

x,
z,
〈V

h〉 x
,z

[1
07

cm
s−

1 ]

〈Vh〉x,z

〈|Vy|〉x,z

HYDRO, 1283

HYDRO, 2563

HYDRO, 5123

MHD, 1283

MHD, 2563

MHD, 5123

Fig. 9. Vertical profiles of the horizontal (Vh =
√

V2
x + V2

z ) and verti-
cal (Vy) velocity components averaged over t ∈ (15τconv, 25τconv). Here,
light blue is used to indicate the quantities extracted from the MHD
simulations, whereas vermilion is used for the hydrodynamic simula-
tions. An estimate of the statistical uncertainty associated to the aver-
aged profiles can be inferred by looking at the typical dispersion among
the hydrodynamic simulations, which represent a set of three indepen-
dent (and numerically converged) realizations of the oxygen shell.

boundary of the convective shell. In simulations of SSD action in
the solar convection zone, including part of the underlying sta-
ble layer was shown to have little effect on the generation of the
magnetic field as compared to simulations with closed bound-
ary conditions (Hotta 2017). This author found that the imposed
steep, positive entropy gradient across the solar overshoot re-
gion prevented convective plumes from penetrating into the sta-
ble layer deeper than a small fraction of the pressure scale height,
at least on the characteristic timescales set by convection. Thus,
in those simulations, the bottom boundary of the solar convective
region acted like a reflecting wall for the turbulent flows and the
magnetic fields. Oxygen-burning shells of massive stars are also
characterized by steep, stabilizing entropy gradients at their bot-
tom boundary (Meakin & Arnett 2007; Jones et al. 2017; Varma
& Müller 2021). In the model of Jones et al. (2017) (which this
setup is based on), the square of the Brunt-Väisälä frequency at
the silicon-oxygen boundary was several times larger than that
at the upper boundary of the oxygen shell (see Fig. 4 of Jones
et al. 2017). Because this quantity is directly related to the buoy-
ancy jump, entrainment of material from the underlying stable
layer into the convection zone can easily be neglected over the
timescales simulated here. All these considerations give us con-
fidence that the chosen boundary conditions are well suited for
the simulations presented in this study.

The strength of the magnetic field is not uniform across the
convective shell. As previously discussed, the magnetic energy
approaches equipartition with the kinetic energy content of the
turbulent eddies in the inertial range. Because the mean flow
speed does not vary considerably across the convective shell, the
spatial dependence of the magnetic field strength is mostly set by
the density stratification. Indeed, the vertical profile of the root-
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Fig. 10. Vertical profiles of the root-mean-square relative pseudo-
entropy fluctuation in the MHD (light blue) and purely hydrodynamic
simulations (vermilion), averaged over t ∈ (15τconv, 25τconv). The upper
convective boundary is, on average, at the position of the peaks visible
at y = (2.3− 2.4)Lref .
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Fig. 11. Vertical profiles of the vertical enthalpy flux (FH) averaged over
t ∈ (15τconv, 25τconv). Here, light blue is used to indicate the quantities
extracted from the MHD simulations, whereas vermilion is used for the
hydrodynamic simulations.

mean-square magnetic field rescaled by its local equipartition
value (Beq =

√
ρVrms) shows much less dependence on y as com-

pared with the results shown in Fig. 15. The height-dependence
of the dynamo action can also be seen in Fig. 16, where we show
horizontal averages of the Lorentz work,

WL = ⟨V ·
[
(∇ × B) × B

]⟩x,z. (27)
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As a reference, we also show the buoyancy work,

Wb = ⟨Vy gy δρ⟩x,z, (28)

where δρ is the density fluctuation. Buoyancy generates kinetic
energy in the whole convective shell except in the overshoot
layer, where it is responsible for the deceleration of the con-
vective flows. On all grids, the magnitude of the Lorentz work
is maximum at the bottom of the convective shell and progres-
sively drops to zero toward the upper convective boundary. WL
is negative throughout the whole convective layer, meaning that,
on average, kinetic energy is everywhere converted into mag-
netic energy. Moreover, profiles of the Lorentz work approach
convergence on the finest grids. This result confirms that most of
the conversion of kinetic energy into magnetic energy happens
on relatively large spatial scales, which are well resolved even
with moderate grid resolutions.

We note that the dynamo does not operate in the subadiabatic
layer, although a seed field is present there as well. The turbulent
structures created by the nonlinear breaking of IGWs (visible in
Fig. 8), which is one of the mechanisms that can excite an SSD
in stable stratifications (Skoutnev et al. 2021), are not efficient
enough to build a significant magnetic field in these simulations.
The magnetic field in the stable layer reaches saturation with
average strengths of only two to ten times that of the initial seed
field.

4.3. Impact of magnetic fields on the growth of the
convective shell

The turbulent convective flows generated in this setup give rise to
a rich variety of hydrodynamic processes at the upper convective
boundary, including shear instabilities, breaking of surface grav-
ity waves, and convective overshooting. These processes con-
tribute to the entrainment of high-entropy material from the over-
lying stable layer into the convection zone, which causes the con-
vective shell to grow in time (see also Fig. 8). We computed the
mass entrained per unit surface area inside the convection zone
by using horizontal averages of the density and the passive tracer
ψ as in Andrassy et al. (2022),

Me(t) =
∫ ycb(t)

Lref

ρ̄(y, t)ψ̄(y, t)dy. (29)

At each time, we assumed that the vertical coordinate of the up-
per convective boundary, ycb, was the position of the steepest
gradient in ψ̄. In Fig. 17 we show the time evolution of the en-
trained mass for all the simulations run in this study. In the hy-
drodynamic case, numerical convergence is reached already on
the lowest-resolved grid (with 1283 cells) within a maximum rel-
ative statistical uncertainty of 5%, which is consistent with the
results obtained by Andrassy et al. (2022). Instead, the mass en-
trained in the MHD runs slightly decreases with increasing the
grid resolution. A significant deviation between the MHD and
the hydrodynamic simulations is visible only after 15τconv, when
the dynamo has fully entered its nonlinear phase. By the time
the simulations have finished, the best resolved MHD setup has
entrained 12% less mass than the hydrodynamic runs, and the
mass entrainment rate Ṁe has been reduced by ≈ 20%.

Because MHD effects do not dramatically reduce the mass
entrainment rate at the upper convective boundary, finding the
mechanisms responsible for the observed discrepancy in Me be-
tween the MHD and the hydrodynamic results is challenging.
One possible explanation is that convective flows in the MHD
simulations have some of their kinetic energy converted into
magnetic energy by the action of the SSD (see the discussion
in Sect. 4.2), which reduces the amount of energy available to
overcome the buoyancy of the entrained high-entropy material
as compared to the hydrodynamic case (Spruit 2015). Further-
more, strong horizontal magnetic fields (see Fig. 14) could con-
siderably reduce the growth rate of the shear instabilities that
take place at the convective boundary, which are in part responsi-
ble for the mixing. Magnetic fields aligned with the shear flows,
in fact, have a stabilizing effect against the growth of Kelvin–
Helmholtz instabilities, especially if the Alfvénic Mach number
MAlf =

√
ρ|V|/|B| is close to unity (Chandrasekhar 1961; Frank

et al. 1996). As shown in Fig. 15, the mean magnetic field at
the upper convective boundary reaches values as high as 60% of
the equipartition field (MAlf ≳ 1.5), so short-wavelength Kelvin–
Helmholtz instabilities are likely to be partly suppressed.

As pointed out by a number of authors (Meakin & Arnett
2007; Andrassy et al. 2020; Horst et al. 2020; Andrassy et al.
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2023), some degree of mixing at stellar convective boundaries
can be induced by nonadiabatic effects. In this setup, the mean
entropy inside the convection zone increases by the action of the
heat source, and eventually overcomes the entropy level of a nar-
row subadiabatic layer right above the upper convective bound-
ary. This layer becomes negatively buoyant, so it sinks and gets
mixed into the convection zone. This process enlarges the size
of the convective shell over time as long as the source of entropy
generation is active. In the work of Andrassy et al. (2022), it
was estimated that by the end of the simulations, ≈ 60% of Ṁe
in this setup was due to the heating. This process is expected to
operate regardless of the properties of the convective flows, so
MHD processes would only be able to affect the remaining 40%
of the entrainment rate. In the absence of heating-induced mix-
ing, magnetic fields would then suppress as much as 50% of the
mass entrainment.

5. Summary and discussion

We have run 3D simulations of turbulent convection, dynamo
amplification and convective boundary mixing in an idealized
oxygen-burning shell of a 25 M⊙ star. In particular, we have
searched for possible MHD effects on the boundary mixing and
the properties of the convective flows by performing a compari-
son between an MHD and a purely hydrodynamic setup. The nu-
merical results have been carefully analyzed by means of a con-
vergence study, in which the grid resolution was progressively
increased from 1283 to 5123 cells.

Random stretching of the magnetic field lines due to the tur-
bulent motions in the convective shell excites small-scale dy-
namo (SSD) action on all of the considered grids. The dynamo
instability amplifies the seed field by ≈ 4 orders of magnitude
in a few convective turnover timescales. The kinematic phase
of the dynamo ends when the magnetic field becomes strong
enough to affect the evolution of the flows on the small scales
of turbulence. During the saturated stage, the work done by fluid
motions against magnetic tension forces sustains the magnetic
field against numerical resistive dissipation. The saturated mean
magnetic-to-kinetic energy ratio reaches values in the 20− 30%
range. The magnetic field strength in the oxygen shell moder-
ately increases with the grid resolution, and it has characteristic
values of ∼ 1010 G in the 5123 simulation. Such strong fields
partly suppress the small-scale isotropic features in the veloc-
ity field typical of turbulent convection in hydrodynamic simula-
tions. The resulting flows present anisotropic, thread-like struc-
tures that extend over a large fraction of the convective shell. The
magnetic fields generated during the oxygen burning stage can
be further amplified if parts of the oxygen shell end up collapsing
onto a neutron star. By assuming a simple flux-freezing model,
we estimate that the magnetic field strength at the surface of the
neutron star would be on the order of 1015 − 1016 G, which is in
agreement with values inferred from observations of magnetars
(Kouveliotou et al. 1998; Woods & Thompson 2006; Olausen &
Kaspi 2014).

Vertical and horizontal fluid velocities in the bulk of the con-
vective layer in the MHD simulations are reduced, as compared
to the hydrodynamic runs, on average by 10% and 20%, respec-
tively. The fact that the dynamo does not have the same impact
on the different fluid velocity components could be related to the
transport of thermal energy inside the convection zone. In fact,
in order for convection to transport the excess heat deposited by
the energy source outward with partly suppressed vertical ve-
locities, the thermal content of the buoyant flows must be en-
hanced. Because the heat source is unchanged in the MHD sim-

ulations, this can only be achieved by reducing the horizontal
mixing of entropy between the up- and the downflows. Indeed,
we observe that root-mean-square entropy fluctuations are sys-
tematically enhanced in the MHD simulations, which in turn
increases the thermal contrast between the convective plumes.
Consequently, we do not observe a significant impact of mag-
netic fields on the vertical enthalpy fluxes.

Power spectra computed in the bulk of the convective shell
reveal that 30% of the total magnetic energy is stored at spa-
tial wavenumbers kh < 10. Such a large-scale field component is
generated by large-scale convective cells, which can efficiently
stretch the magnetic field lines on length scales comparable to
the size of the convection zone. The kinetic energy spectra in the
MHD simulations deviate from the Kolmogorov law (k−5/3

h ) in
the inertial range, where the efficiency of the dynamo is maxi-
mum. On the finest grid, the magnetic energy becomes greater
than the kinetic energy at a spatial wavenumber of kh ≈ 10, cor-
responding to half of a pressure scale height in the convection
zone.

The mass entrained into the convection zone in the MHD
case is smaller by 12% than that in the hydrodynamic setup.
The partial suppression of the mixing at the convective boundary
correlates with the average strength of the magnetic field in the
convection zone. It is possible that the reduction of the kinetic
energy of the convective flows caused by the action of the small-
scale turbulent dynamo and the presence of magnetic fields with
strengths up to 60% of the equipartition value at the convective
boundary contribute to the partial suppression of the mixing. By
the end of the simulations, the mass entrainment rate is reduced
by 20% with respect to the hydrodynamic simulations.

In our simulations, SSDs seem to have only a mild effect
on the growth of the convective oxygen shell. This is consis-
tent with the findings of Varma & Müller (2021), who ran global
MHD simulations of an oxygen shell in an 18 M⊙ star. Overall,
these authors did not observe any significant impact of the small-
scale turbulent dynamo on the properties of the convective flows
as compared to a non-MHD simulation. Those results, however,
may have been affected by low effective Reynolds numbers,
which are typical for global simulations of turbulent convec-
tion at moderate grid resolutions. Our “box-in-a-star” approach,
used in combination with special numerical solvers optimized
for tackling stratified, subsonic magnetoconvection, allows us
to achieve much higher effective resolution than that obtained
by Varma & Müller (2021). We find that the small-scale turbu-
lent dynamo reduces the kinetic energy content of the convective
shell by 25% on average and significantly changes the topology
of the velocity field with respect to the purely hydrodynamic
problem. These results are particularly important in the context
of the “perturbation-aided” explosion mechanism, whose effi-
ciency is set by both the magnitude of the convective velocities
and the typical spatial scales of convection in the burning shells
of the supernova progenitor (Müller et al. 2017; Couch et al.
2020).

One point of concern is related to the usage of the Implicit-
Large-Eddy-Simulation (ILES) approach in this study, which
gives rise to effective magnetic Prandtl numbers Prm = ν/η
close to or even larger than unity. Such large values of Prm
are an overestimation of the actual conditions found in oxygen-
burning shells. Based on the analytic expressions of the viscous
and resistive coefficients provided in Augustson et al. (2019),
we estimate that realistic magnetic Prandtl numbers in the oxy-
gen shell considered here range from Prm = 0.001 to Prm = 0.1.
It is well known that certain properties of the small-scale tur-
bulent dynamo are sensitive to the value of Prm. In particular,
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Fig. 13. Distribution of By on the z= 0 plane (upper row) and the y= 1.5Lref plane (lower row) at t/τconv = 22 for the indicated grid resolutions.

the strength of the saturated magnetic field is often found to be
an increasing function of Prm (Schekochihin et al. 2004; Bran-
denburg 2011; Käpylä et al. 2018). Unfortunately, no general
consensus has been reached so far as to the behavior of SSDs
at low Prm, which is likely setup dependent. More MHD simula-
tions of the oxygen-burning phase with realistic Prandtl numbers
are therefore required in order to properly establish the impact
of magnetic fields on the dynamics of the convective shell. Fi-
nally, we did not include a nuclear-burning network in our sim-
plified setup, so further investigation on possible indirect effects
of magnetic fields on the nuclear energy generation and nucle-
osynthesis is certainly needed.
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